Search results for "Lattice model"

showing 10 items of 60 documents

Dynamics of confined polymer melts: Recent Monte Carlo simulation results

2000

The dynamic behavior of thin polymer films is studied by Monte Carlo simulations of a simplified lattice model. The film geometry is realized by two opposite hard walls whose distance is varied in the simulations. In the films the dynamics is accelerated with respect to the bulk, leading to a decrease of the extrapolated glass transition temperature with decreasing film thickness.

chemistry.chemical_classificationCondensed Matter::Materials ScienceCondensed matter physicsChemistryCondensed Matter::SuperconductivityMonte Carlo methodDynamics (mechanics)General Physics and AstronomyStatistical physicsPolymerGlass transitionLattice model (physics)
researchProduct

Entangled states and coherent interaction in resonant media

2014

The entanglement features of some solid state materials, as well as of particular systems of interacting atoms and fields are analyzed. A detailed investigation of the rich phase structure of low dimensional spin models, describing the natural mineral azurite and copper based coordination compounds, has revealed regimes with the most robust entanglement behavior. Using the dynamical system approach, the phase structure of some classical models on hierarchical (recursive) lattices has been also studied and, for the first time, the transition between chaotic and periodic regimes by means of tangent bifurcation has been detected.A detailed description of entanglement properties of three atoms …

Intrication quantique[PHYS.PHYS]Physics [physics]/Physics [physics]Dispersive regimeSpin-lattice modelsTransfert adiabatique de population[ PHYS.PHYS ] Physics [physics]/Physics [physics]Entanglement distillationQuantum entanglementRégime dispersifDistillation de l'intricationAdiabatic population transferChaos[PHYS.PHYS] Physics [physics]/Physics [physics]BifurcationModèles de réseaux de spins
researchProduct

A boundary condition for arbitrary shaped inlets in lattice-Boltzmann simulations

2009

We introduce a mass-flux-based inlet boundary condition for the lattice-Boltzmann method. The proposed boundary condition requires minimal amount of boundary data, it produces a steady-state velocity field which is accurate close to the inlet even for arbitrary inlet geometries, and yet it is simple to implement. We demonstrate its capability for both simple and complex inlet geometries by numerical experiments. For simple inlet geometries, we show that the boundary condition provides very accurate inlet velocities when Re less than or similar to 1. Even with moderate Reynolds number, the inlet velocities are accurate for practical purposes. Furthermore, the potential of our boundary condit…

geographygeography.geographical_feature_categorybusiness.industryApplied MathematicsMechanical EngineeringComputational MechanicsLattice Boltzmann methodsReynolds numberGeometryMechanicsComputational fluid dynamicsPhysics::Classical PhysicsInletBoltzmann equationPhysics::GeophysicsComputer Science ApplicationsPhysics::Fluid Dynamicssymbols.namesakeMechanics of MaterialssymbolsVector fieldBoundary value problembusinessLattice model (physics)MathematicsInternational Journal for Numerical Methods in Fluids
researchProduct

Aging effects in glassy polymers: a Monte Carlo study

1996

Abstract By means of dynamic Monte Carlo simulation the physical aging of a glassy polymer melt is studied. The melt is simulated by a coarse-grained lattice model, the bond-fluctuation model, on a simple cubic lattice. In order to generate glassy freezing an energy is associated with long bonds, which leads to a competition between the energetically favored bond stretching and the local density of the melt at low temperatures. The development of this competition during the cooling process strongly slows down the structural relaxation and makes the melt freeze in an amorphous structure as soon as the internal relaxation time matches the time scale of the cooling rate. Therefore the model ex…

Statistics and Probabilitychemistry.chemical_classificationMaterials scienceMonte Carlo methodRelaxation (NMR)ThermodynamicsSimple cubic latticePolymerCondensed Matter PhysicsAmorphous solidCondensed Matter::Soft Condensed MatterSuperposition principlechemistryGlass transitionLattice model (physics)Physica A: Statistical Mechanics and its Applications
researchProduct

Fermionic transport and out-of-equilibrium dynamics in a homogeneous Hubbard model with ultracold atoms

2012

The transport measurements of an interacting fermionic quantum gas in an optical lattice provide a direct experimental realization of the Hubbard model—one of the central models for interacting electrons in solids—and give insights into the transport properties of many-body phases in condensed-matter physics.

Condensed Matter::Quantum GasesPhysicsOptical latticeHubbard modelCondensed matter physicsHomogeneousQuantum gasUltracold atomQuantum mechanicsGeneral Physics and AstronomyElectronLattice model (physics)Nature Physics
researchProduct

Anomalous diffusion in polymer melts

2002

Abstract We present a study of the anomalous diffusion regimes in polymer melt dynamics performing a Monte Carlo (MC) simulation of the bond-fluctuation lattice model. Special emphasis is laid on the crossover from a Rouse-like motion to the behavior predicted by reptation theory. For the longest chains of N=400 the high statistical accuracy of the data allows for clear identification of the subdiffusive regimes in the center of mass motion and the monomer displacement. They are well compatible with those predicted by reptation theory. Furthermore a detailed analysis of the different short time anomalous diffusion regimes in the melt dynamics of polymer chains is presented and it is shown t…

chemistry.chemical_classificationQuantitative Biology::BiomoleculesAnomalous diffusionMonte Carlo methodCrossoverGeneral Physics and AstronomyThermodynamicsPolymerDisplacement (vector)Condensed Matter::Soft Condensed MatterReptationchemistryStatistical physicsCenter of massPhysical and Theoretical ChemistryLattice model (physics)Chemical Physics
researchProduct

Structure of bottle-brush polymers in solution: A Monte Carlo test of models for the scattering function

2008

Extensive Monte Carlo results are presented for a lattice model of a bottle-brush polymer under good solvent or Theta solvent conditions. Varying the side chain length, backbone length, and the grafting density for a rigid straight backbone, both radial density profiles of monomers and side chain ends are obtained, as well as structure factors describing the scattering from a single side chain and from the total bottle-brush polymer. To describe the structure in the interior of a very long bottle-brush, a periodic boundary condition in the direction along the backbone is used, and to describe effects due to the finiteness of the backbone length, a second set of simulations with free ends of…

chemistry.chemical_classificationQuantitative Biology::BiomoleculesMaterials scienceStatistical Mechanics (cond-mat.stat-mech)ScatteringMonte Carlo methodTheta solventGeneral Physics and AstronomyFOS: Physical sciencesPolymerCondensed Matter - Soft Condensed MatterMolecular physicsConvolutionCondensed Matter::Soft Condensed MatterchemistrySide chainPeriodic boundary conditionsSoft Condensed Matter (cond-mat.soft)Physical and Theoretical ChemistryCondensed Matter - Statistical MechanicsLattice model (physics)
researchProduct

Evidence for the time-temperature superposition principle from Monte-Carlo simulations of the glass transition in two-dimensional polymer melts

1992

The bond fluctuation model on a square lattice with a bond-length dependent potential exhibits in simulations of slow cooling a kinetic glass transition where the system falls out of equilibrium. Extending previous work, the relaxation functions of gyration radius and end-to-end distance, and the bond autocorrelation function of the polymers are presented and related to the time-dependent displacements of inner monomeric units and center of gravity of the whole chains, respectively. Over a wide temperature range the data can be collapsed on master curves satisfying the time-temperature superposition principle for Rouse dynamics.

Quantitative Biology::BiomoleculesSuperposition principleTime–temperature superpositionChemistryMonte Carlo methodRelaxation (physics)ThermodynamicsRadiusGlass transitionGyrationMolecular physicsLattice model (physics)Die Makromolekulare Chemie, Theory and Simulations
researchProduct

Structure and dynamics of thin polymer films: a case study with the bond-fluctuation model

2002

Abstract This paper reports Monte Carlo simulation results of a polymer melt of short, non-entangled chains which are embedded between two impenetrable walls. The melt is simulated by the bond-fluctuation lattice model under athermal conditions, i.e. only excluded volume interactions between the monomers and between the monomers and the walls are taken into account. In the simulations, the wall separation is varied from about one to about 15 times the bulk radius of gyration R g . The confinement influences both static and dynamic properties of the films: Chains close to the walls preferentially orient parallel to it. This parallel orientation decays with increasing distances from the wall …

chemistry.chemical_classificationPreferential alignmentLattice model (finance)Polymers and PlasticsCondensed matter physicsChemistryOrganic ChemistryMonte Carlo methodPolymerCondensed Matter::Soft Condensed MatterOrientation (geometry)Excluded volumeMaterials ChemistryRadius of gyrationStatistical physicsThin filmPolymer
researchProduct

Lattice Dynamics in Wurtzite Semiconductors: The Bond Charge Model of CdS

1999

An extension of the adiabatic bond charge model of Rustagi and Weber is used to study the lattice dynamic properties of wurtzite-type compounds. The model has been applied to the description of the phonon dispersion of CdS, which has been recently measured by neutron scattering. The agreement with the neutron data is excellent with a small set of physically meaningful parameters. The eigenvector admixture of the E2 modes, calculated at the G-point, agrees with the experimental values obtained through the isotopic mass dependence of the optical modes and ab initio calculations.

Condensed Matter::Materials ScienceCondensed matter physicsChemistryAb initio quantum chemistry methodsPhononLattice (order)NeutronNeutron scatteringCondensed Matter PhysicsAdiabatic processLattice model (physics)Electronic Optical and Magnetic MaterialsWurtzite crystal structurephysica status solidi (b)
researchProduct